If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+11x=78
We move all terms to the left:
4x^2+11x-(78)=0
a = 4; b = 11; c = -78;
Δ = b2-4ac
Δ = 112-4·4·(-78)
Δ = 1369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1369}=37$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-37}{2*4}=\frac{-48}{8} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+37}{2*4}=\frac{26}{8} =3+1/4 $
| 13−2c=9 | | -2.1x+(-3.9)=20.25 | | 3(4x-6)=18+4x | | -10+x/5=-10 | | -12x+(-4)=56 | | 3=(2x-1)+2(2x+5) | | 0.4+5.4=y | | 5/6x-1/3=x-2/3 | | -2.1x+(-3.9)=56 | | 1/3(9-x)=-16 | | 1/3(9-x)=16 | | -x+61/5=117/10 | | 2/3(x-4)=28 | | s-3=2.5 | | x3-8=4 | | 4303.94=(1000/(x)^1)+(1000/(x)^2)+(1000/(x)^3)+(1000/(x)^4)+(1000/(x)^5) | | 32=-(5x-7) | | 2(4d+2)=12 | | 1.20x+2.5≤20=X | | z+4.7=5.3 | | x–10–2x+7=8+x–10–3x | | 12(x+8)=24+18x | | 4303.94=(1000/(1+x)^1)+(1000/(1+x)^2)+(1000/(1+x)^3)+(1000/(1+x)^4)+(1000/(1+x)^5) | | 5x-180=3x+42 | | 16-(5a)+(2a)-1=41-a | | x1=3X+17 | | 4-(7a)=3-a+13 | | 6^(2z-1)=36^z | | 7^(x-5)=49^(x) | | (18a)-9=5(2a+3) | | -12=+6w+6 | | 3x-2x-x-(5x+6)=x-2 |